
Interactive Computing

with Matlab

Gerald W. Recktenwald
Department of Mechanical Engineering

Portland State University
gerry@me.pdx.edu

These slides are a supplement to the book Numerical Methods with

Matlab: Implementations and Applications, by Gerald W. Recktenwald,
c© 2000–2006, Prentice-Hall, Upper Saddle River, NJ. These slides are

copyright c© 2000–2006 Gerald W. Recktenwald. The PDF version
of these slides may be downloaded or stored or printed only for

noncommercial, educational use. The repackaging or sale of these
slides in any form, without written consent of the author, is prohibited.

The latest version of this PDF file, along with other supplemental material

for the book, can be found at www.prenhall.com/recktenwald or
web.cecs.pdx.edu/~gerry/nmm/.

Version 1.1 August 21, 2006

page 1

Overview (1)

• Basic Matlab Operations

⊲ Starting Matlab

⊲ Using Matlab as a calculator
⊲ Introduction to variables and functions

• Matrices and Vectors: All variables are matrices.

⊲ Creating matrices and vectors
⊲ Subscript notation
⊲ Colon notation

NMM: Interactive Computing with Matlab page 2

Overview (2)

• Additional Types of Variables

⊲ Complex numbers
⊲ Strings
⊲ Polynomials

• Working with Matrices and Vectors

⊲ Some basic linear algebra
⊲ Vectorized operations
⊲ Array operators

• Managing the Interactive Environment

• Plotting

NMM: Interactive Computing with Matlab page 3

Starting Matlab

• Double click on the Matlab icon, or on unix systems type “matlab”
at the command line.

• After startup Matlab displays a command window that is used to
enter commands and display text-only results.

• Enter Commands at the command prompt:

>> for full version
EDU> for educational version

• Matlab responds to commands by printing text in the command
window, or by opening a figure window for graphical output.

• Toggle between windows by clicking on them with the mouse.

NMM: Interactive Computing with Matlab page 4

Matlab Desktop

Recent Directory Menu:
Used to change current
working directory.

Launch Pad/Workspace:
Used to browse documentation,
or view values of variables in
the workspace

Command Prompt:
Enter typed commands here.
Text results are displayed here.

Command History/Current
Directory: View and re-enter

previously typed commands,
or change directories

Select Launch Pad tab or
Workspace tab

Select Command History tab
or Current Directory tab

NMM: Interactive Computing with Matlab page 5

Matlab Desktop

• The desktop provides different ways of interacting with Matlab

⊲ Entering commands in the command window
⊲ Viewing values stored in variables
⊲ Editing statements in Matlab functions and scripts
⊲ Creating and annotating plots

• Watch an animated demonstration of the Matlab desktop by typing

playbackdemo(’desktop’)

at the command prompt.

NMM: Interactive Computing with Matlab page 6

Matlab as a Calculator (1)

Enter formulas at the command prompt

>> 2 + 6 - 4 (press return after ‘‘4’’)

ans =

4

>> ans/2

ans =

2

NMM: Interactive Computing with Matlab page 7

Matlab as a Calculator (2)

Define and use variables

>> a = 5

a =

5

>> b = 6

b =

6

>> c = b/a

c =

1.2000

NMM: Interactive Computing with Matlab page 8

Built-in Variables

pi (= π) and ans are a built-in variables

>> pi

ans =

3.1416

>> sin(ans/4)

ans =

0.7071

Note: There is no “degrees” mode. All angles are measured in radians.

NMM: Interactive Computing with Matlab page 9

Built-in Functions

Many standard mathematical functions, such as sin, cos, log, and
log10, are built-in

>> log(256) log(x) computes the natural logarithm of x

ans =

5.5452

>> log10(256) log10(x) is the base 10 logarithm

ans =

2.4082

>> log2(256) log2(x) is the base 2 logarithm

ans =

8

NMM: Interactive Computing with Matlab page 10

Ways to Get Help

• Use on-line help to request info on a specific function

>> help sqrt

• In Matlab version 6 and later the doc function opens the on-line
version of the manual. This is very helpful for more complex commands.

>> doc plot

• Use lookfor to find functions by keywords

>> lookfor functionName

NMM: Interactive Computing with Matlab page 11

On-line Help (1)

Syntax:

help functionName

Example:

>> help log

produces

LOG Natural logarithm.

LOG(X) is the natural logarithm of the elements of X.

Complex results are produced if X is not positive.

See also LOG2, LOG10, EXP, LOGM.

The help function provides a compact summary of how to use a
command. Use the doc function to get more in-depth information.

NMM: Interactive Computing with Matlab page 12

On-line Help (2)

The help browser opens when you type a doc command:

>> doc plot

NMM: Interactive Computing with Matlab page 13

Looking for Functions

Syntax:

lookfor string

searches first line of function descriptions for “string”.

Example:

>> lookfor cosine

produces

ACOS Inverse cosine.

ACOSH Inverse hyperbolic cosine.

COS Cosine.

COSH Hyperbolic cosine.

NMM: Interactive Computing with Matlab page 14

Strategies for Interactive Computing

• Use the command window for short sequences of calculations

• Later we’ll learn how to build reusable functions for more complex tasks.

• The command window is good for testing ideas and running sequences
of operations contained in functions

• Any command executed in the command window can also be used in a
function.

Let’s continue with a tour of interactive computing.

NMM: Interactive Computing with Matlab page 15

Suppress Output with Semicolon (1)

Results of intermediate steps can be suppressed with semicolons.

Example: Assign values to x, y, and z, but only display the value of z in
the command window:

>> x = 5;

>> y = sqrt(59);

>> z = log(y) + x^0.25

z =

3.5341

NMM: Interactive Computing with Matlab page 16

Suppress Output with Semicolon (2)

Type variable name and omit the semicolon to print the value of a variable
(that is already defined)

>> x = 5;

>> y = sqrt(59);

>> z = log(y) + x^0.25

z =

3.5341

>> y

y =

7.6811 (= log(sqrt(59)) + 5^0.25)

NMM: Interactive Computing with Matlab page 17

Multiple Statements per Line

Use commas or semicolons to enter more than one statement at once.
Commas allow multiple statements per line without suppressing output.

>> a = 5; b = sin(a), c = cosh(a)

b =

-0.9589

c =

74.2099

NMM: Interactive Computing with Matlab page 18

Matlab Variables Names

Legal variable names:

• Begin with one of a–z or A–Z

• Have remaining characters chosen from a–z, A–Z, 0–9, or

• Have a maximum length of 31 characters

• Should not be the name of a built-in variable, built-in function, or
user-defined function

Examples:

xxxxxxxxx

pipeRadius

widgets_per_box

mySum

mysum

Note: mySum and mysum are different

variables. Matlab is case

sensitive.

NMM: Interactive Computing with Matlab page 19

Built-in Matlab Variables (1)

Name Meaning

ans value of an expression when that expression is not assigned to

a variable

eps floating point precision

pi π, (3.141492 . . .)

realmax largest positive floating point number

realmin smallest positive floating point number

Inf ∞, a number larger than realmax,

the result of evaluating 1/0.

NaN not a number, the result of evaluating 0/0

NMM: Interactive Computing with Matlab page 20

Built-in Matlab Variables (2)

Rule: Only use built-in variables on the right hand side of an expression.
Reassigning the value of a built-in variable can create problems
with built-in functions.

Exception: i and j are preassigned to
√
−1. One or both of i or j are

often reassigned as loop indices. More on this later.

NMM: Interactive Computing with Matlab page 21

Matrices and Vectors

All Matlab variables are matrices

• A vector is a matrix with one row or one column.

• A scalar is a matrix with one row and one column.

• A character string is a row of column vector of characters.

Consequences:

• Rules of linear algebra apply to addition, subtraction and multiplication.

• Elements in the vectors and matrices are addressed with Fortran-like
subscript notation, e.g.,, x(2), A(4,5). Usually this notation is clear
from context, but it can be confused with a function call,

y = sqrt(5) sqrt is a built-in function

z = f(3) Is f a function or variable?

NMM: Interactive Computing with Matlab page 22

Creating Matlab Variables

Matlab variables are created with an assignment statement

>> x = expression

where expression is a legal combinations of numerical values,
mathematical operators, variables, and function calls.

The expression can involve:

• Manual entry

• Built-in functions that return matrices

• Custom (user-written) functions that return matrices

• Loading matrices from text files or “mat” files

NMM: Interactive Computing with Matlab page 23

Element-by-Element Creation of Matrices and Vectors (1)

A matrix, a column vector,
and a row vector:

A =





3 2
3 1
1 4





x =









5
7
9
2









v =
[

9 −3 4 1
]

As Matlab variables:

>> A = [3 2; 3 1; 1 4]

A =

3 2

3 1

1 4

>> x = [5; 7; 9; 2]

x =

5

7

9

2

>> v = [9 -3 4 1]

v =

9 -3 4 1

NMM: Interactive Computing with Matlab page 24

Element-by-Element Creation of Matrices and Vectors (2)

For manual entry, the elements in a vector are enclosed in square brackets.
When creating a row vector, separate elements with a space.

>> v = [7 3 9]

v =

7 3 9

Separate columns with a semicolon

>> w = [2; 6; 1]

w =

2

6

1

NMM: Interactive Computing with Matlab page 25

Element-by-Element Creation of Matrices and Vectors (3)

When assigning elements to matrix, row elements are separated by spaces,
and columns are separated by semicolons

>> A = [1 2 3; 5 7 11; 13 17 19]

A =

1 2 3

5 7 11

13 17 19

NMM: Interactive Computing with Matlab page 26

Transpose Operator (1)

Once it is created, a variable can be transformed with other operators.
The transpose operator converts a row vector to a column vector (and vice

versa), and it changes the rows of a matrix to columns.

>> v = [2 4 1 7]

v =

2 4 1 7

>> w = v’

w =

2

4

1

7

NMM: Interactive Computing with Matlab page 27

Transpose Operator (2)

>> A = [1 2 3; 4 5 6; 7 8 9]

A =

1 2 3

4 5 6

7 8 9

>> B = A’

B =

1 4 7

2 5 8

3 6 9

NMM: Interactive Computing with Matlab page 28

Overwriting Variables

Once a variable has been created, it can be reassigned

>> x = 2;

>> x = x + 2

x =

4

>> y = [1 2 3 4]

y =

1 2 3 4

>> y = y’

y =

1

2

3

4

NMM: Interactive Computing with Matlab page 29

Using Functions to Create Matrices and Vectors

Create vectors with built-in functions:

linspace and logspace

Create matrices with built-in functions:

ones, zeros, eye, diag, . . .

Note that ones and zeros can also be used to create vectors.

NMM: Interactive Computing with Matlab page 30

Creating vectors with linspace (1)

The linspace function creates vectors with elements having uniform
linear spacing.

Syntax:

x = linspace(startValue,endValue)

x = linspace(startValue,endValue,nelements)

Examples:

>> u = linspace(0.0,0.25,5)

u =

0 0.0625 0.1250 0.1875 0.2500

>> u = linspace(0.0,0.25);

Remember: Ending a statement with semicolon suppresses the output.

NMM: Interactive Computing with Matlab page 31

Creating vectors with linspace (2)

Column vectors are created by appending the transpose operator to
linspace

>> v = linspace(0,9,4)’

v =

0

3

6

9

NMM: Interactive Computing with Matlab page 32

Example: A Table of Trig Functions

>> x = linspace(0,2*pi,6)’; (note transpose)

>> y = sin(x);

>> z = cos(x);

>> [x y z]

ans =

0 0 1.0000

1.2566 0.9511 0.3090

2.5133 0.5878 -0.8090

3.7699 -0.5878 -0.8090

5.0265 -0.9511 0.3090

6.2832 0 1.0000

The expressions y = sin(x) and z = cos(x) take advantage of
vectorization. If the input to a vectorized function is a vector or matrix,
the output is often a vector or matrix having the same shape. More on this
later.

NMM: Interactive Computing with Matlab page 33

Creating vectors with logspace

The logspace function creates vectors with elements having uniform
logarithmic spacing.

Syntax:

x = logspace(startValue,endValue)

x = logspace(startValue,endValue,nelements)

creates nelements elements between 10startValue and 10endValue. The
default value of nelements is 100.

Example:

>> w = logspace(1,4,4)

w =

10 100 1000 10000

NMM: Interactive Computing with Matlab page 34

Functions to Create Matrices (1)

Name Operation(s) Performed

diag create a matrix with a specified diagonal entries, or extract

diagonal entries of a matrix

eye create an identity matrix

ones create a matrix filled with ones

rand create a matrix filled with random numbers

zeros create a matrix filled with zeros

linspace create a row vector of linearly spaced elements

logspace create a row vector of logarithmically spaced elements

NMM: Interactive Computing with Matlab page 35

Functions to Create Matrices (2)

Use ones and zeros to set intial values of a matrix or vector.

Syntax:

A = ones(nrows,ncols)

A = zeros(nrows,ncols)

Examples:
>> D = ones(3,3)

D =

1 1 1

1 1 1

1 1 1

>> E = ones(2,4)

E =

1 1 1 1

1 1 1 1

NMM: Interactive Computing with Matlab page 36

Functions to Create Matrices (3)

ones and zeros are also used to create vectors. To do so, set either
nrows or ncols to 1.

>> s = ones(1,4)

s =

1 1 1 1

>> t = zeros(3,1)

t =

0

0

0

NMM: Interactive Computing with Matlab page 37

Functions to Create Matrices (4)

The eye function creates identity matrices of a specified size. It can also
create non-square matrices with ones on the main diagonal.

Syntax:

A = eye(n)

A = eye(nrows,ncols)

Examples:

>> C = eye(5)

C =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

NMM: Interactive Computing with Matlab page 38

Functions to Create Matrices (5)

The optional second input argument to eye allows non-square matrices to
be created.

>> D = eye(3,5)

D =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

where Di,j = 1 whenever i = j.

NMM: Interactive Computing with Matlab page 39

Functions to Create Matrices (6)

The diag function can either create a matrix with specified diagonal
elements, or extract the diagonal elements from a matrix

Syntax:

A = diag(v)

v = diag(A)

Example: Use diag to create a matrix

>> v = [1 2 3];

>> A = diag(v)

A =

1 0 0

0 2 0

0 0 3

NMM: Interactive Computing with Matlab page 40

Functions to Create Matrices (7)

Example: Use diag to extract the diagonal of a matrix

>> B = [1:4; 5:8; 9:12]

B =

1 2 3 4

5 6 7 8

9 10 11 12

>> w = diag(B)

w =

1

6

11

NMM: Interactive Computing with Matlab page 41

Functions to Create Matrices (8)

The action of the diag function depends on the characteristics and
number of the input(s). This polymorphic behavior of Matlab functions
is common. Refer to the on-line documentation for the possible variations.

>> A = diag([3 2 1]) Create a matrix with a specified diagonal

A =

3 0 0

0 2 0

0 0 1

>> B = [4 2 2; 3 6 9; 1 1 7];

>> v = diag(B) Extract the diagonal of a matrix

v =

4

6

7

NMM: Interactive Computing with Matlab page 42

Subscript Notation (1)

If A is a matrix, A(i,j) selects the element in the ith row and jth column.
Subscript notation can be used on the right hand side of an expression to
refer to a matrix element.

>> A = [1 2 3; 4 5 6; 7 8 9];

>> b = A(3,2)

b =

8

>> c = A(1,1)

c =

1

NMM: Interactive Computing with Matlab page 43

Subscript Notation (1)

Subscript notation is also used to assign matrix elements

>> A(1,1) = c/b

A =

0.2500 2.0000 3.0000

4.0000 5.0000 6.0000

7.0000 8.0000 9.0000

Referring to elements beyond the dimensions the matrix results in an error

>> A = [1 2 3; 4 5 6; 7 8 9];

>> A(1,4)

??? Index exceeds matrix dimensions.

NMM: Interactive Computing with Matlab page 44

Subscript Notation (1)

Assigning an element that is beyond the existing dimensions of the matrix
causes the matrix to be resized!

>> A = [1 2 3; 4 5 6; 7 8 9];

A =

1 2 3

4 5 6

7 8 9

>> A(4,4) = 11

A =

1 2 3 0

4 5 6 0

7 8 9 0

0 0 0 11

In other words, Matlab automatically resizes matrices on the fly.

NMM: Interactive Computing with Matlab page 45

Colon Notation (1)

Colon notation is very powerful and very important in the effective use of
Matlab. The colon is used as both an operator and as a wildcard.

Use colon notation to:

• create vectors

• refer to or extract ranges of matrix elements

NMM: Interactive Computing with Matlab page 46

Colon Notation (2)

Syntax:

startValue:endValue

startValue:increment:endValue

Note: startValue, increment, and endValue do not need to be
integers

NMM: Interactive Computing with Matlab page 47

Colon Notation (3)

Creating row vectors:

>> s = 1:4

s =

1 2 3 4

>> t = 0:0.1:0.4

t =

0 0.1000 0.2000 0.3000 0.4000

NMM: Interactive Computing with Matlab page 48

Colon Notation (4)

Creating column vectors:

>> u = (1:5)’

u =

1

2

3

4

5

>> v = 1:5’

v =

1 2 3 4 5

v is a row vector because 1:5’ creates a vector between 1 and the
transpose of 5.

NMM: Interactive Computing with Matlab page 49

Colon Notation (5)

Use colon as a wildcard to refer to an entire column or row

>> A = [1 2 3; 4 5 6; 7 8 9];

>> A(:,1)

ans =

1

4

7

>> A(2,:)

ans =

4 5 6

NMM: Interactive Computing with Matlab page 50

Colon Notation (6)

Or use colon notation to refer to subsets of columns or rows

>> A(2:3,1)

ans =

4

7

>> A(1:2,2:3)

ans =

ans =

2 3

5 6

NMM: Interactive Computing with Matlab page 51

Colon Notation (7)

Colon notation is often used in compact expressions to obtain results that
would otherwise require several steps.

Example:

>> A = ones(8,8);

>> A(3:6,3:6) = zeros(4,4)

A =

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

NMM: Interactive Computing with Matlab page 52

Colon Notation (8)

Finally, colon notation is used to convert any vector or matrix to a column
vector.

Example:

>> x = 1:4;

>> y = x(:)

y =

1

2

3

4

NMM: Interactive Computing with Matlab page 53

Colon Notation (9)

Colon notation converts a matrix to a column vector by appending the
columns of the input matrix

>> A = rand(2,3);

>> v = A(:)

v =

0.9501

0.2311

0.6068

0.4860

0.8913

0.7621

0.4565

Note: The rand function generates random elements between zero and one.

Repeating the preceding statements will, in all likelihood, produce different

numerical values for the elements of v.

NMM: Interactive Computing with Matlab page 54

Additional Types of Variables

Matrix elements can either be numeric values or characters. Numeric
elements can either be real or complex (imaginary).

More general variable types are available: n-dimensional arrays (where
n > 2), structs, cell arrays, and objects. Numeric (real and complex) and
string arrays of dimension two or less will be sufficient for our purposes.

Consider some simple variations on numeric and string matrices:

• Complex Numbers

• Strings

• Polynomials

NMM: Interactive Computing with Matlab page 55

Complex Numbers

Matlab automatically performs complex arithmetic

>> sqrt(-4)

ans =

0 + 2.0000i

>> x = 1 + 2*i (or, x = 1 + 2*j)

x =

1.0000 + 2.0000i

>> y = 1 - 2*i

y =

1.0000 - 2.0000i

>> z = x*y

z =

5

NMM: Interactive Computing with Matlab page 56

Unit Imaginary Numbers (1)

i and j are ordinary Matlab variables preassigned with the value
√
−1.

>> i^2

ans =

-1

Both or either i and j can be reassigned

>> i = 5;

>> t = 8;

>> u = sqrt(i-t) (i-t = -3, not -8+i)

u =

0 + 1.7321i

>> u*u

ans =

-3.0000

NMM: Interactive Computing with Matlab page 57

Unit Imaginary Numbers (2)

The i and j variables are often used for array subscripting. Set i (or j) to
an integer value that is also a valid array subscript.

>> A = [1 2; 3 4];

>> i = 2;

>> A(i,i) = 1

A =

1 2

3 1

>> x = A(2,j)

??? Subscript indices must either be real positive integers or logicals.

Note: When working with complex numbers, it is a good idea to
reserve either i or j for the unit imaginary value

√
−1.

NMM: Interactive Computing with Matlab page 58

Euler Notation (1)

Euler notation represents a complex number by a phaser

z = ζeiθ

x = Re(z) = |z| cos(θ) = ζ cos(θ)

y = iIm(z) = i|z| sin(θ) = iζ sin(θ)
θ

ζ

real

imaginary

x

iy z = ζ eiθ

NMM: Interactive Computing with Matlab page 59

Functions for Complex Arithmetic (1)

Function Operation

abs Compute the magnitude of a number

abs(z) is equivalent to sqrt(real(z)^2 + imag(z)^2)

angle Angle of complex number in Euler notation

exp If x is real, exp(x) = ex

If z is complex, exp(z) = eRe(z)(cos(Im(z) + i sin(Im(z))

conj Complex conjugate of a number

imag Extract the imaginary part of a complex number

real Extract the real part of a complex number

NMM: Interactive Computing with Matlab page 60

Functions for Complex Arithmetic (2)

Examples:

>> zeta = 5; theta = pi/3;

>> z = zeta*exp(i*theta)

z =

2.5000 + 4.3301i

>> abs(z)

ans =

5

>> sqrt(z*conj(z))

ans =

5

>> x = real(z)

x =

2.5000

>> y = imag(z)

y =

4.3301

>> angle(z)*180/pi

ans =

60.0000

Remember: There is no “degrees” mode in Matlab. All angles are in radians.

NMM: Interactive Computing with Matlab page 61

Strings

• Strings are matrices with
character elements.

• String constants are enclosed in
single quotes

• Colon notation and subscript
operations apply

Examples:

>> first = ’John’;

>> last = ’Coltrane’;

>> name = [first,’ ’,last]

name =

John Coltrane

>> length(name)

ans =

13

>> name(9:13)

ans =

trane

NMM: Interactive Computing with Matlab page 62

Functions for String Manipulation (1)

Function Operation

char Converts an integer to the character using ASCII codes, or

combines characters into a character matrix

findstr Finds one string in another string

length Returns the number of characters in a string

num2str Converts a number to string

str2num Converts a string to a number

strcmp Compares two strings

strmatch Identifies rows of a character array that begin with a string

strncmp Compares the first n elements of two strings

sprintf Converts strings and numeric values to a string

NMM: Interactive Computing with Matlab page 63

Functions for String Manipulation (2)

num2str converts a number to a string

>> msg1 = [’There are ’,num2str(100/2.54),’ inches in a meter’]

msg1 =

There are 39.3701 inches in a meter

For greater control over format of the number-to-string conversion, use
sprintf

>> msg2 = sprintf(’There are %5.2f cubic inches in a liter’,1000/2.54^3)

msg2 =

There are 61.02 cubic inches in a liter

The Matlab sprintf function is similar to the C function of the same
name, but it uses single quotes for the format string.

NMM: Interactive Computing with Matlab page 64

Functions for String Manipulation (3)

The char function can be used to combine strings

>> both = char(msg1,msg2)

both =

There are 39.3701 inches in a meter

There are 61.02 cubic inches in a liter

or to refer to individual characters by their ASCII codes1

>> char(49)

ans =

1

>> char([77 65 84 76 65 66])

ans =

MATLAB

1See e.g.,, www.asciicodes.com or wikipedia.org/wiki/ASCII.

NMM: Interactive Computing with Matlab page 65

Functions for String Manipulation (4)

Use strcmp to test whether two strings are equal, i.e., if they contain the
same sequence of characters.

>> msg1 = [’There are ’,num2str(100/2.54),’ inches in a meter’];

>> msg2 = sprintf(’There are %5.2f cubic inches in a liter’,1000/2.54^3);

>> strcmp(msg1,msg2)

ans =

0

Compare the first n characters of two strings with strncmp

>> strncmp(msg1,msg2,9)

ans =

1

The first nine characters of both strings are “There are”, so
strncmp(msg1,msg2,9) returns 1, or true.

NMM: Interactive Computing with Matlab page 66

Functions for String Manipulation (5)

Locate occurances of one string in another string with findstr

>> findstr(’in’,msg1)

ans =

19 26

>> msg1(19:20)

ans =

in

NMM: Interactive Computing with Matlab page 67

Polynomials

Matlab polynomials are stored as vectors of coefficients. The polynomial
coefficients are stored in decreasing powers of x

Pn(x) = c1x
n + c2x

n−1 + . . . + cnx + cn+1

Example: Evaluate x3 − 2x + 12 at x = −1.5

Store the coefficients of the polynomial in vector c:

>> c = [1 0 -2 12];

Use the built-in polyval function to evaluate the polynomial.

>> polyval(c,1.5)

ans =

12.3750

NMM: Interactive Computing with Matlab page 68

Functions for Manipulating Polynomials

Function Operations performed

conv Product (convolution) of two polynomials

deconv Division (deconvolution) of two polynomials

poly Create a polynomial having specified roots

polyder Differentiate a polynomial

polyval Evaluate a polynomial

polyfit Polynomial curve fit

roots Find roots of a polynomial

NMM: Interactive Computing with Matlab page 69

A Quick Overview of Linear Algebra in Matlab

The name “Matlab” is a shortened form of “MATrix LABoratory”.

Matlab data types and syntax make it easy to perform standard
operations of linear algebra including addition, subtraction, and
multiplication of vectors and matrices.

Chapter 7 provides a detailed review of linear algebra. Here we provide a
simple introduction to some operations that are necessary for routine
calculation.

• Vector addition and subtraction

• Inner and outer products

• Vectorization

• Array operators

NMM: Interactive Computing with Matlab page 70

Vector Addition and Subtraction

Vector and addition and subtraction are element-by-element operations.

Example:

>> u = [10 9 8]; (u and v are row vectors)

>> v = [1 2 3];

>> u+v

ans =

11 11 11

>> u-v

ans =

9 7 5

NMM: Interactive Computing with Matlab page 71

Vector Inner and Outer Products

The inner product combines two vectors to form a scalar

σ = u · v = u vT ⇐⇒ σ =
∑

ui vi

The outer product combines two vectors to form a matrix

A = uTv ⇐⇒ ai,j = ui vj

NMM: Interactive Computing with Matlab page 72

Inner and Outer Products in Matlab

Inner and outer products are supported in Matlab as natural extensions
of the multiplication operator

>> u = [10 9 8]; (u and v are row vectors)

>> v = [1 2 3];

>> u*v’ (inner product)

ans =

52

>> u’*v (outer product)

ans =

10 20 30

9 18 27

8 16 24

NMM: Interactive Computing with Matlab page 73

Vectorization

• Vectorization is the use of single, compact expressions that operate on
all elements of a vector without explicitly writing the code for a loop.
The loop is executed by the Matlab kernel, which is much more
efficient at evaluating a loop in interpreted Matlab code.

• Vectorization allows calculations to be expressed succintly so that
programmers get a high level (as opposed to detailed) view of the
operations being performed.

• Vectorization is important to make Matlab operate efficiently2.

2Recent versions of Matlab have improved the efficiency for some non-vectorized code.

NMM: Interactive Computing with Matlab page 74

Vectorization of Built-in Functions

Most built-in function support vectorized operations. If the input is a
scalar the result is a scalar. If the input is a vector or matrix, the output is
a vector or matrix with the same number of rows and columns as the input.

Example:

>> x = 0:pi/4:pi (define a row vector)

x =

0 0.7854 1.5708 2.3562 3.1416

>> y = cos(x) (evaluate cosine of each x(i))

y =

1.0000 0.7071 0 -0.7071 -1.0000

NMM: Interactive Computing with Matlab page 75

Contrast with FORTRAN Implementation

The Matlab statements

x = 0:pi/4:pi;

y = cos(x);

are equivalent to the following FORTRAN code

real x(5),y(5)

pi = 3.14159624

dx = pi/4.0

do 10 i=1,5

x(i) = (i-1)*dx

y(i) = sin(x(i))

10 continue

No explicit loop is necessary in Matlab.

NMM: Interactive Computing with Matlab page 76

Vectorized Calculations (6)

More examples

>> A = pi*[1 2; 3 4]

A =

3.1416 6.2832

9.4248 12.5664

>> S = sin(A)

S =

0 0

0 0

>> B = A/2

B =

1.5708 3.1416

4.7124 6.2832

>> T = sin(B)

T =

1 0

-1 0

NMM: Interactive Computing with Matlab page 77

Array Operators

Array operators support element-by-element operations that are not
defined by the rules of linear algebra.

Array operators have a period prepended to a standard operator.

Symbol Operation

.* element-by-element multiplication

./ element-by-element “right” division

.\ element-by-element “left” division

.^ element-by-element exponentiation

Array operators are a very important tool for writing vectorized code.

NMM: Interactive Computing with Matlab page 78

Using Array Operators (1)

Examples: Element-by-element multiplication and division

>> u = [1 2 3];

>> v = [4 5 6];

Use .* and ./ for element-by-element multiplication and division

>> w = u.*v

w =

4 10 18

>> x = u./v

x =

0.2500 0.4000 0.5000

NMM: Interactive Computing with Matlab page 79

Using Array Operators (1)

Examples: Element-by-element multiplication and division

>> u = [1 2 3];

>> v = [4 5 6];

>> y = sin(pi*u/2) .* cos(pi*v/2)

y =

1 0 1

>> z = sin(pi*u/2) ./ cos(pi*v/2)

Warning: Divide by zero.

z =

1 NaN 1

NMM: Interactive Computing with Matlab page 80

Using Array Operators (2)

Examples: Application to matrices

>> A = [1 2 3 4; 5 6 7 8];

>> B = [8 7 6 5; 4 3 2 1];

>> A.*B

ans =

8 14 18 20

20 18 14 8

>> A*B

??? Error using ==> *

Inner matrix dimensions must agree.

The last statement causes an error because the number of columns in A is
not equal to the number of rows in B — a requirement for A and B to be
compatible for matrix multiplication.

NMM: Interactive Computing with Matlab page 81

Using Array Operators (3)

>> A = [1 2 3 4; 5 6 7 8];

>> B = [8 7 6 5; 4 3 2 1];

>> A*B’

ans =

60 20

164 60

The number of columns in A is equal to the number of rows in BT , so A*B’

is a legal matrix-matrix multiplication.

Array operators also apply to matrix powers.

>> A.^2

ans =

1 4 9 16

25 36 49 64

NMM: Interactive Computing with Matlab page 82

The Matlab Workspace (1)

All variables defined as the result of entering statements in the command
window, exist in the Matlab workspace.

At the beginning of a Matlab session, the workspace is empty.

Being aware of the workspace allows you to

• Create, assign, and delete variables

• Load data from external files

• Manipulate the Matlab path

NMM: Interactive Computing with Matlab page 83

The Matlab Workspace (2)

The clear command deletes variables from the workspace. The who

command lists the names of variables in the workspace

>> clear (Delete all variables from the workspace)

>> who

(No response, no variables are defined after ‘clear’)

>> a = 5; b = 2; c = 1;

>> d(1) = sqrt(b^2 - 4*a*c);

>> d(2) = -d(1);

>> who

Your variables are:

a b c d

NMM: Interactive Computing with Matlab page 84

The Matlab Workspace (3)

The whos command lists the name, size, memory allocation, and the class
of each variables defined in the workspace.

>> whos

Name Size Bytes Class

a 1x1 8 double array

b 1x1 8 double array

c 1x1 8 double array

d 1x2 32 double array (complex)

Grand total is 5 elements using 56 bytes

NMM: Interactive Computing with Matlab page 85

The Matlab Workspace (4)

The whos command returns the array dimensions, memory requirement
and class for each variable in the workspace.

Built-in variable classes are double, char, sparse, struct, and cell.
The class of a variable determines the type of data that can be stored in it.
We will be dealing primarily with numeric data, which is the double class,
and occasionally with string data, which is in the char class.

NMM: Interactive Computing with Matlab page 86

Working with External Data Files

Write data to a file

save fileName

save fileName variable1 variable2 ...

save fileName variable1 variable2 ... -ascii

Read in data stored in matrices

load fileName

load fileName matrixVariable

NMM: Interactive Computing with Matlab page 87

Loading Data from External File

Example: Load data from a file and plot the data

>> load wolfSun.dat;

>> xdata = wolfSun(:,1);

>> ydata = wolfSun(:,2);

>> plot(xdata,ydata)

NMM: Interactive Computing with Matlab page 88

The Matlab Path

Matlab will only use those functions and data files that are in its path.

To add N:\IMAUSER\ME352\PS2 to the path, type

>> p = path;

>> path(p,’N:\IMAUSER\ME352\PS2’);

Matlab version 5 and later has an interactive path editor that makes it
easy to adjust the path.

The path specification string depends on the operating system. On a
Unix/Linux computer a path setting operation might look like:

>> p = path;

>> path(p,’~/matlab/ME352/ps2’);

NMM: Interactive Computing with Matlab page 89

Plotting

• Plotting (x, y) data

• Axis scaling and annotation

• 2D (contour) and 3D (surface) plotting

NMM: Interactive Computing with Matlab page 90

Plotting (x, y) Data (1)

Two dimensional plots are created with the plot function

Syntax:

plot(x,y)

plot(xdata,ydata,symbol)

plot(x1,y1,x2,y2,...)

plot(x1,y1,symbol1,x2,y2,symbol2,...)

Note: x and y must have the same shape, x1 and y1 must have the
same shape, x2 and y2 must have the same shape, etc.

NMM: Interactive Computing with Matlab page 91

Plotting (x, y) Data (2)

Example: A simple line plot

>> x = linspace(0,2*pi);

>> y = sin(x);

>> plot(x,y);

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

NMM: Interactive Computing with Matlab page 92

Line and Symbol Types (1)

The curves for a data set are drawn from combinations of the color,
symbol, and line types in the following table.

Color Symbols Line

y yellow . point ^ triangle (up) - solid

m magenta o circle < triangle (left) : dotted

c cyan x x-mark > triangle (right) -. dashdot

r red + plus p pentagram -- dashed

g green * star h hexagram

b blue s square

w white d diamond

k black v triangle

(down)

To choose a color/symbol/line style, chose one entry from each column.

NMM: Interactive Computing with Matlab page 93

Line and Symbol Types (2)

Examples:

Put yellow circles at the data points:

plot(x,y,’yo’)

Plot a red dashed line with no symbols:

plot(x,y,’r--’)

Put black diamonds at each data point and connect the diamonds with
black dashed lines:

plot(x,y,’kd--’)

NMM: Interactive Computing with Matlab page 94

Alternative Axis Scaling (1)

Combinations of linear and logarithmic scaling are obtained with functions
that, other than their name, have the same syntax as the plot function.

Name Axis scaling

loglog log10(y) versus log10(x)

plot linear y versus x

semilogx linear y versus log10(x)

semilogy log10(y) versus linear x

Note: As expected, use of logarithmic axis scaling for data sets with
negative or zero values results in a error. Matlab will complain
and then plot only the positive (nonzero) data.

NMM: Interactive Computing with Matlab page 95

Alternative Axis Scaling (2)

Example:

>> x = linspace(0,3);

>> y = 10*exp(-2*x);

>> plot(x,y);

0 1 2 3
0

2

4

6

8

10

>> semilogy(x,y);

0 1 2 3
10

-2

10
-1

10
0

10
1

NMM: Interactive Computing with Matlab page 96

Multiple plots per figure window (1)

The subplot function is used to create a matrix of plots in a single figure
window.

Syntax:

subplot(nrows,ncols,thisPlot)

Repeat the values of nrows and ncols for all plots in a single figure
window. Increment thisPlot for each plot

NMM: Interactive Computing with Matlab page 97

Multiple plots per figure window (1)

Example:

>> x = linspace(0,2*pi);

>> subplot(2,2,1);

>> plot(x,sin(x)); axis([0 2*pi -1.5 1.5]); title(’sin(x)’);

>> subplot(2,2,2);

>> plot(x,sin(2*x)); axis([0 2*pi -1.5 1.5]); title(’sin(2x)’);

>> subplot(2,2,3);

>> plot(x,sin(3*x)); axis([0 2*pi -1.5 1.5]); title(’sin(3x)’);

>> subplot(2,2,4);

>> plot(x,sin(4*x)); axis([0 2*pi -1.5 1.5]); title(’sin(4x)’);

(See next slide for the plot.)

NMM: Interactive Computing with Matlab page 98

Multiple plots per figure window (2)

0 2 4 6
-1.5

-1

-0.5

0

0.5

1

1.5
sin(x)

0 2 4 6
-1.5

-1

-0.5

0

0.5

1

1.5
sin(2x)

0 2 4 6
-1.5

-1

-0.5

0

0.5

1

1.5
sin(3x)

0 2 4 6
-1.5

-1

-0.5

0

0.5

1

1.5
sin(4x)

NMM: Interactive Computing with Matlab page 99

Plot Annotation

Name Operation(s) performed

axis Reset axis limits

grid Draw grid lines at the major ticks marks on the x and y axes

gtext Add text to a location determined by a mouse click

legend Create a legend to identify symbols and line types when multiple

curves are drawn on the same plot

text Add text to a specified (x, y) location

xlabel Label the x-axis

ylabel Label the y-axis

title Add a title above the plot

NMM: Interactive Computing with Matlab page 100

Plot Annotation Example (1)

>> D = load(’pdxTemp.dat’); m = D(:,1); T = D(:,2:4);

>> plot(m,t(:,1),’ro’,m,T(:,2),’k+’,m,T(:,3),’b-’);

>> xlabel(’Month’);

>> ylabel(’Temperature ({}^\circ F)’);

>> title(’Monthly average temperature at PDX’);

>> axis([1 12 20 100]);

>> legend(’High’,’Low’,’Average’,2);

Note: The pdxTemp.dat file is in the data directory of the NMM
toolbox. Make sure the toolbox is installed and is included in the
Matlab path.

(See next slide for the plot.)

NMM: Interactive Computing with Matlab page 101

Plot Annotation Example (2)

2 4 6 8 10 12
20

30

40

50

60

70

80

90

100

Month

T
em

pe
ra

tu
re

 (
de

gr
ee

s
F

)

Monthly average temperature for Portland International Airport

High
Low
Average

NMM: Interactive Computing with Matlab page 102

